International FOOD <u>RESEARCH</u> Journal

Simultaneous analysis of Curcumin and demethoxycurcumin in *Curcuma* xanthorriza using FTIR spectroscopy and chemometrics

^{1,2} Lestari, H.P., ¹Martono, S., ^{1,2}Wulandari, R., and ^{1,3*}Rohman, A.

¹Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, 55281, Indonesia ²The National Agency of Drug and Food Control, Republic of Indonesia.

³Research Center of Halal Products, Gadjah Mada University, Yogyakarta, 55281, Indonesia

Article history

<u>Abstract</u>

Received: 17 June 2016 Received in revised form: 17 September 2016 Accepted: 19 September 2016

Keywords

Curcuma xanthorrhiza Roxb Curcuminoid FTIR spectroscopy Partial least square HPLC

Curcuma xanthorrhiza Roxb (Temulawak) contains curcuminoid with various pharmacological effects. To assure the quality and efficacy of C. xanthorrhiza, the content of curcuminoid in the product must be properly determined. This research aims to analyze the content of curcuminoid (curcumin and demethoxycurcumin) in ethanolic extract of C. xanthorrhiza using FTIR spectroscopy combined with partial least squares (PLS). The actual contents of curcuminoid in the ethanolic extract of C. xanthorrhiza were previously determined using HPLC with PDA detector. FTIR spectroscopy is validated by cross validation using leave-one-out (LOO) and external validation. The wavenumbers selected (4000-650 cm⁻¹) were relied on its capability to provide the correlation between the actual value and the predictive value of curcuminoid, indicated by the highest R² value with small PRESS and RMSEC values in the calibration model. During PLS calibration, the R^2 values of calibration model and LOO for curcumin (C), demetoxycurcumin (DM) and total curcuminoid (TC) were > 0.99 with RMSEC, RMSECV and PRESS values were relatively small, whereas the R² values for external validation were 0.98; 0.99; 0.98, with RMSEP and PRESS values were relatively small for C, DM and TC, respectively. Curcuminoid contents determined using FTIR spectroscopy combined with PLS were not statistically significant compared with HPLC method using independent sample t-test (P > 0.05). It can be concluded that FTIR spectroscopy combined with PLS can be used as an alternative method to determine the curcuminoid content in C. xanthorrhiza.

© All Rights Reserved

Introduction

One of the medicinal plant used popularly in Indonesia is *Curcuma xanthorrhiza* Roxb, or known as Temu lawak in Indonesia. *C. xanthorriza* is a wellknown traditional medicine having some biological activities such as anti-inflammatory, antioxidant (Jantan *et al.*, 2012), anticancer activities (Park *et al.*, 2008), acetylcholinesterase inhibitors, as well as protective agents against neurodegenerative disorders (Zhang *et al.*, 2015), anti-metastatic due to xanthorrhizol (Choi *et al.*, 2005), antimicrobial activity (Mary *et al.*, 2012), and hepatoprotective (Lin *et al.*, 1996).

Curcuminoid is believed to be responsible for some biological activities and is used as chemical marker in *C. xanthorriza*. Several methods, especially based on chromatographic and electrophoretic techniques, have been developed and used for analysis of curcuminoid in *C. xanthorrhizza* such as high performance liquid chromatography with various detection systems like PDA and or UV (Jadhav *et al.*, 2007; Wichitnithad *et al.*, 2009), and UV-mass spectrometer detector (Li *et al.*, 2011), thin layer chromatography (Paramasivam *et al.*, 2009; Phattanawasin *et al.*, 2009), capillary electrophoresis (Lechenberg *et al.*, 2004), micellar electrokinetic chromatography (Watanabe *et al.*, 2002; Unger *et al.*, 2009). Rohman (2012) has reviewed some methods used for determination of total and individual curcuminoid. Chromatographic and electrophoretic methods are time consuming and need skilful analyst, therefore some simple techniques based on spectroscopic technique is developed.

UV-Vis spectroscopy has been used for analysis of curcuminoid, and the content of curcuminoid is expressed as total curcuminoid. The wavelength of 420 nn is used by Pothitirat and Gritsanapan (2006) for total curcuminoid determination. Near infrared and mid infrared spectroscopies are proposed for analysis of total curcuminoid and individual curcuminoid (Tanaka *et al.*, 2008; Rohman *et al.*, 2015). Due to

no separation nature, spectroscopic techniques are unsuitable for analysis of individual curcuminoid in the extract of *C. xanthorriza*. Fortunately, with the development of chemometrics software, it is possible to determine individual curcuminoid by selecting the specific wavelength (in UV spectroscopy) or wavenumbers (in infrared spectroscopy). In this study, we proposed FTIR spectroscopy combined with multivariate calibration of partial least square (PLS) for simultaneous analysis of individual curcuminoid (curcumin and demethoxycurcumin) and total curcuminoid in ethanolic extract of *C. xanthorriza* without any separation.

Materials and Methods

The rhizomes of *Curcuma xanthorriza* were obtained from several markets in Indonesia namely Bukit Duri, Harjobinangun, Imogiri, Johar Baru, Klaten, Kulon Progo, Kuningan, Parung Bogor, Plaza Purworejo, Purworejo, Sleman, Tegal, Temanggung, Wonosari, and Bandung during April-May 2015. The standard curcuminoid containing curcumin (C), demethoxycurcumin (DM) and bisdemethoxycurcumin (BDM) is obtained from E. Merck, Darmstat, Germany. The reagents and solvents used were pro-analytical grade. The solvents used as mobile phase during analysis with HPLC were HPLC grade.

Preparation of standards C, DM and BDM

The standards of C, DM, and BDM are isolated from curcuminoid by column chromatography using Silica Gel (230-400 mesh) from E. Merck and mobile phase of chloroform and methanol in gradient manner. The purity of C, DM and BDM was checked by thin layer chromatography using silica gel 60F254 from E. Merck with three different solvents systems having different polarity. The concentration of C, DM and BDM is determined using HPLC as in section of Analysis using HPLC.

Preparation of ethanolic extract of C. xanthorriza

The rhizomes of *C. xanthrorriza* is cleaned, cut into small using commercial cutter, and dried using sun drying with appropriate sealing. The cut rhizomes are powdered and then macerated using ethanol (1: 9) for 2 days. The macerate is filtered and the filtrate is evaporated using vacuum rotary evaporator. The extract is then subjected to partition with n-hexane in order to remove essential oil. The purified extract is then dried using oven at 40°C and subjected to analysis with HPLC and FTIR spectrophotometer.

Analysis using HPLC

The purity of C, DM and BDM isolated from curcuminoid as well as the levels of C, DM and BDM is determined using HPLC using photodiode array detector at 425 nm. Separation of C, DM and BDM is carried using Waters X-bridge C_{18} column (250 mm x 4.6 mm i.d; 5 µm) maintained at temperature of 30oC. The mobile phase is the mixture acetonitrile: acetic acid 2% in aquadest (50: 50 v/v) delivered isocratically at 1.0 mL/min. The injection volume is 20 uL (Wichitnithad *et al.*, 2009). Quantification is performed using external standard.

FTIR spectroscopy analysis

The samples of purified extracts of *C. xanthorriza* are made in good contact with ATR crystal and its spectra are scanned using FTIR spectrophotometer ABB MB3000 (Clairet Scientific, Northampton, UK), equipped with deuterated triglycine sulphate (DTGS) detector and beam splitter of germanium, and processed using Horizon MB FTIR software version 3.0.13.1 (ABB, Canada). The spectral FTIR are measured at mid infrared region corresponding to wavenumbers of 4000-650 cm⁻¹ with resolution of 4 cm⁻¹ and number of scanning of 32. All spectra were rationed against a background of air spectrum. After every scan, a new reference air background spectrum was taken. These spectra were recorded as absorbance values at each data point in duplicated.

Statistical analysis

Partial least square (PLS) calibration model used for making the correlation between the actual values of C, DM, and total curcuminoid is performed with the aid of Minitab software version 17. The values of R², root mean square error of calibration (RMSEC), root mean square error of cross validation (RMSECV), and predicted residual error of sum of squares (PRESS) are calculated using Minitab.

Results and Discussion

Analysis of Curcumin and Demethoxycurcumin using HPLC

The main curcuminoid in *C. xathorriza* is curcumin (C) and demethoxycurcumin (DM) with chemical structures in Figure 1. Demethoxycurcumin is more polar than curcumin, therefore, in HPLC analysis using C_{18} column, DM is less retained that curcumin. Table 1 compiled the levels of C and DM in purified extract of *C. xanthorriza*. In addition, the level of total curcuminoid (sum of curcumin and demethoxycurcumin) is also analysed. These values are used as actual values during analysis of C, DM

Origin of samples	Level of curcumin	Level of demethoxycurcumin	The curcuminoid total
Bukit Duri	32.83	11.49	44.32
Harjobinangun	30.16	11.69	41.85
lm og iri	27.94	8.9	36.84
Johar Baru	26.5	9.87	36.37
Klaten	32.6	12.53	45.13
Kulon Progo	24.82	9.31	34.13
Kuningan	27.8	11.71	39.51
Parung Bogor	22.15	7.53	29.68
Plaza Purworejo	30.44	10.94	41.38
Purworejo	31.76	14.43	46.19
Sleman	32.37	9.3	41.67
Tegal	31.07	13.25	44.32
Temanggung	25.01	9.04	34.05
Wonosari	26.88	9.34	36.22
Bandung	27.68	10.69	38.37

 Table 1. The levels of curcumin and demethoxycurcumin in purified extract of

 Curcuma xanthorriza as analysed by HPLC.

Figure 1. The chemical structure of curcumin and demethoxycurcumin

and total curcuminoid using FTIR spectroscopy. The highest level of curcumin is observed in *C. xanthorriza* from Bukit duri, while the highest level of DM is found in *C. xanthorriza* from Purworejo.

In order to make classification or grouping among C. xanthorriza from different region, principal component analysis (PCA) is explored. PCA is one of the classification technique with unsupervised category (Che Man et al., 2011). Figure 2 revealed the PCA srore plot along the first principle component (PC1) and the second principle component using the levels of C, DM and total curcuminoid as variables. PC1 account for 90.6% variation (eigenvalue of 2.7174), PC2 account for 9.40% variation (eigenvalue of 0.2826), while PC3 has 0% variation (eigenvalue of 0.000). This confirmed that PCA is chemometrics technique used for reduction of variables. Based on PCA score plot, C. xanthorriza can be intentionally classified into 4 groups, according to quadrant in Figure 2. C. xanthorriza from Parung Bogor has the similar profile with that from Kulon Progo, Johar Baru, Temanggung and Bandung.

Figure 2. The score plot of principal component analysis for classification of purified extract of *Curcuma xanthorriza* using the levels of curcumin, demethoxycurcumin and total curcuminoid as variables

Analysis of Curcumin and Demethoxycurcumin using HPLC

The same purified extract of rhizomes of C. xanthooriza analysed using HPLC is then analysed using FTIR spectroscopy. Combined with multivariate calibration of partial least square (PLS), FTIR spectroscopy allows analyst to determine analytes in extract simultaneously without any preparation step (Bunaciu et al., 2011). Figure 3 revealed the typical FTIR spectra of purified extract of C. xanthorriza. Each peaks and shoulders correspond to functional groups present which are responsible for IR absorption. The main component in C. xanthorriza is curcumin, therefore, it is not surprising the appearance of -OH stretching vibration in 3450-3255 cm-1 which might from OH- curcumin. The first step is selecting the wavenumbers region or the combined wavenumbers region capable of providing the best prediction between actual values of C and DM with FTIR predicted values using PLS calibration model. Finally the whole mid infrared region (4000-650 cm⁻

Figure 3. Typical FTIR spectra of purified extract of *Curcuma xanthorriza*, scanning using attenuated total reflectance mode at wavenumbers of 4000-650 cm⁻¹.

¹) is selected for quantification of C, DM and total curcuminoid.

Figure 4 revealed PLS calibration model for the relationship between actual values of C, DM and total curcuminoid with FTIR spectroscopy-predicted values. The values of R² and RMSEC are used for evaluation of PLS model. The R² values obtained for such relationship are 0.9997, 0.9998 and 0.9996 for C, DM and total curcuminoid respectively. The R² value exceed 0.99 are acceptable for PLS model. Meanwhile, the RMSEC values are 0.0615%, 0.0296%, 0.0999% for C, DM and total curcuminoid respectively. The low values of RMSEC value indicated that PLS are precise enough. PLS calibration model is further validated using leave one out (LOO) technique, and the values of R² and RMSECV are used for evaluation model. During validation using LOO, the R² value of 0.9975, 0.9929, and 0.9951 are obtained with RMSECV of 0.1829%, 0.1814% and 0.3801% for C, DM and total curcuminoid, respectively.

The developed method is also validated using independent samples from six region, namely C. xanthorriza from Kulon Progo, Klaten, Kuningan, Plaza Purworejo, Wonosari and Imogiri. The selection of C. xanthorriza using these six regions is based on variety of curcuminoid contents as determined using HPLC (Table 1), therefore these are suitable for validation procedure. The output of validation showed that the values R², PRESS, and RMSEP obtained are 0.9774, 9.7312, and 1.3951 for curcumin; 0.9930, 0.5018, 0.3168 (for demethoxycurcumin) and 0.9839, 1.5516 and 0.5570 for total curcuminoid, respectively. FTIR spectroscopy and HPLC are finally compared for analysis of samples, and the results are statistically tested using independent sample t-test. The P value obtained is > 0.05, meaning that results obtained by HPLC and FTIR spectroscopy is not statistically different.

Figure 4. The relationship between actual values of C, DM and total curcuminoid with FTIR spectroscopy-predicted values.

in combination FTIR spectroscopy PLS calibration method is alternative official method (HPLC) for analysis of curcuminoid. This method is fast and no need to excessive sample preparation (Tanaka et al., 2008; Rohaeti et al., 2015). However, FTIR spectroscopy developed can only be used for specific extract tested. If the composition of the extract samples to be analyzed is different, FTIR spectra of the samples are different. Consequently, new calibration model together with FTIR spectra optimization is needed (Rohman and Che Man, 2012).

Conclusion

FTIR spectroscopy at wavenumbers of 4000-650 cm⁻¹ combined with partial least square (PLS) calibration is an alternative technique for analysis of curcumin, demethoxycurcumin and total curcuminoid in purified extract of *Curcuma xanthorriza*. FTIR spectroscopic technique is fast, no excessive sample preparation and ideal for routine analysis.

References

- Bunaciu, A.A., Aboul-Enein, H.Y. and Fleschin, S. 2011. Recent Applications of Fourier Transform Infrared Spectrophotometry in Herbal Medicine Analysis. Applied Spectroscopy Reviews 46: 251–260.
- Che Man, Y.B., Rohman, A. and Mansor, T.S.T. 2011. Differentiation of lard from other edible oils by means of Fourier transform infrared spectroscopy and chemometrics. Journal of the American Oil Chemists' Society 88: 187 – 192
- Choi, M-A., Kim, S-H., Chung, W-Y., Hwang, J-W. and Park, K-K. 2005. Xanthorrhizol, a natural sesquiterpenoid from *Curcuma xanthorrhiza*, has an anti-metastatic potential in experimental mouse lung metastasis model. Biochemical and Biophysical Research Communications 326: 210–217.
- Jadhav, B.-K., Mahadik, K.-R. and Paradkar, A.-R. 2007. Development and validation of improved reversed phase-hplc method for simultaneous determination of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Chromatographia 65: 483– 488.
- Jantan, I., Saputri, F.C., Qaisar, M.N. and Buang, F. 2012. Correlation between Chemical Composition of *Curcuma domestica* and *Curcuma xanthorrhiza* and Their Antioxidant Effect on Human Low-Density Lipoprotein Oxidation. Evidence-Based Complementary and Alternative Medicine 2012: 438356.
- Lechtenberg, M., Quandt, B. and Nahrstedt, A. 2004. Quantitative determination of curcuminoids in curcuma rhizomes and rapid differentiation of *Curcuma domestica* Val. and *Curcuma xanthorrhiza* Roxb. by capillary electrophoresis. Phytochemical Analysis 15: 152–158.
- Li, R., Xiang, C., Ye, M., Li, H.-F., Zhang, X. and Guo, D.-A., 2011. Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species. Food Chemistry 126: 1890–1895
- Lin, S.-C., Teng, C.-W., Lin, C.-C., Lin, Y.-H. and Supriyatna, S. 1996. Protective and Therapeutic Effect of the Indonesian Medicinal Herb *Curcuma xanthorrhiza* on β-D-Galactosamine-induced Liver Damage. Phytotherapy Research 10: 131–135
- Mary, H.P.A., Susheela, G.K., Jayasree, S., Nizzy, A.M., Rajagopal, B. and Jeeva, S. 2012. Phytochemical characterization and antimicrobial activity of *Curcuma xanthorrhiza* Roxb. Asian Pacific Journal of Tropical Biomedicine 2(2): S637–S640.
- Park, J.H., Park, K.K., Kim, M.J., Hwang, J.K., Park, S.K. and Chung, W.Y. 2008. Cancer chemoprotective effects of *Curcuma xanthorrhiza*. Phytotherapy Research 22: 695–698.
- Paramasivam, M., Poi, R., Banerjee, H. and

Bandyopadhyay, A. 2009. High-performance thin layer chromatographic method for quantitative determination of curcuminoids in *Curcuma longa* germplasm. Food Chemistry 113: 640–644.

- Phattanawasin, P., Sotanaphun, U. and Sriphong, L. 2009. Validated TLC-image analysis method for simultaneous quantification of curcuminoids in *Curcuma longa*. Chromatographia 69: 397-400.
- Rohaeti, E., Rafi, M., Syafitri, U.D. and Heryanto, R. 2015. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of *Curcuma longa, Curcuma xanthorrhiza* and *Zingiber cassumunar*. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137: 1244-1249.
- Rohman, A. 2012. Analysis of curcuminoids in food and pharmaceutical products. International Food Research Journal 19(1): 19 -27.
- Rohman, A. and Che Man, Y.B. 2012. Analysis of pig derivatives for halal authentication studies. Food Reviews International 28: 97-112.
- Rohman, A., Sudjadi, Devi, Ramadhani, D. and Nugroho, A. 2015. Analysis of Curcumin in *Curcuma longa* and *Curcuma xanthorriza* using FTIR spectroscopy and chemometrics. Research Journal of Medicinal plant 9: 179-186.
- Tanaka, K., Kuba, Y., Sasaki, T., Hiwatashi, F. and Komatsu, K. 2008. Quantitation of Curcuminoids in *Curcuma Rhizome* by Near-infrared Spectroscopic Analysis. Journal of Agricultural and Food Chemistry 56: 8787–8792.
- Unger, M. 2009. Capillary electrophoresis of natural products:current applications and recent advances. Planta Medica 75: 735–745.
- Watanabe, T., Mazumder, T.K., Yamamoto, A., Nagai, S. and Terabe, S. 2000. Separation and determination of curcuminoids in turmeric samples by miceller electrokinetic chromatography with a high molecular mass surfactant. Nippon Shokuhin Kagaku Kogaku Kaishi 47: 780-786.
- Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S. and Rojsitthisak, P., 2009. A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochemical Analysis 20: 314–319.
- Zhang, C., Ji, J., Ji, M. and Fan, P. 2015. Acetylcholinesterase inhibitors and compounds promoting SIRT1 expression from *Curcuma xanthorrhiza*. Phytochemistry Letters 12: 215–219.